
Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 2, Number 18; July-September, 2015, pp. 1612-1616
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/Publication.html

Review of Algorithms to Solve Travelling
Salesman Problem

Avani Sharma1 and Kamlesh Dutta2
1,2Department of Computer Science and Engineering National Institute of Technology,

 Hamirpur Himachal Pradesh-177005, India
E-mail: 1avaninith@gmail.com, 2kdnith@gmail.com

Abstract—The travelling salesman problem (TSP) is a well-known
problem in which shortest route of the salesman covering all cities
once and returning to the starting point, is to be determined. This is
done either by using the exact algorithms or heuristic algorithms.
The main concern with the exact algorithms is their complex nature
to solve the combinatorial travelling salesman optimization problem.
This problem is tackled by the various heuristic algorithms which aim
at finding the optimal route for the salesman. This paper presents a
review of different algorithms to solve TSP and find the shortest route
through all the cities that the salesman has to travel.

1. INTRODUCTION

The travelling salesman problem (TSP) is one of the most
intensively studied problems in the combinatorial optimization
problems [1]. An optimal path has to be determined in terms
of time and monetary value through a number of cities which
is to be travelled by the salesman to reach his destination in
such a manner that he travels each city exactly once and return
to the origin city. The TSP is a NP (non-deterministic
polynomial time) hard problem because any algorithm for
solving it can be translated into one to solve NP problem.

Many researchers have tried to solve TSP using the exact
algorithms which includes branch & cut algorithms[2],
Dynamic Programming [3] and evolutionary algorithms such
as genetic algorithm (GA) [4], particle swarm optimization
(PSO) [5], artificial bee colony (ABC) algorithm [6], ant
colony optimization (ACO) [7, 8] etc. The exact algorithms
find the exact short route in exponential number of steps but
pose the difficulty of complexity and high demand of
computer power. The researchers use the evolutionary
algorithms to construct and improve the route to travel.

This paper gives the review of different algorithms used to
solve the TSP and a detailed description of the most recently
introduced hybridized Honey Bees Mating Optimization
(HHBMO) algorithm [9]. The hybrid HBMO incorporates a
number of different procedures in each step of the main
algorithm in order to increase the efficiency of the proposed
algorithm [10]. The author in [10] presents the remarkable
results using the proposed algorithm to solve the TSP. The
hybrid HBMO takes less computational time making the

algorithm faster and more efficient for solving large-scale
problems.

2. CLASSICAL ALGORITHMS TO SOLVE
TRAVELLING SALESMAN PROBLEM (TSP)

The different exact algorithms such as Branch and Bound and
Dynamic Programming are used to solve Travelling Salesman
Problem.

2.1 Branch and Bound

General technique for branch and bound algorithms involves
modeling the solution space as a tree and then traversing the
tree exploring the most promising sub trees first [2]. This is
continued until either there are no sub trees into which to
further break the problem, or we have arrived at a point where,
if we continue, only inferior solutions will be found.

Algorithm:

search(1,r,best)

pre: t=solution space tree

r=vertex in t

best=best solution found so far

post: best=best solution found after searching sub tree rooted
at r

if r is a complete solution more optimum than best then best=r

generate the children of r

computer bounds for vertices in sub trees of children

V1, ,V2 = feasible children with good lower bounds

for i : = 1 to k

if Vi has a promising upper bound

then search(t, Vi, best)

Branch-and-Bound algorithm, can be used to process TSPs
containing 40–60 cities.

mailto:avaninith@gmail.com
https://en.wikipedia.org/wiki/Branch_and_bound

Review of Algorithms to Solve Travelling Salesman Problem 1613

2.2 Dynamic Programming (DP)

Dynamic programming is a very powerful technique for
efficiently computing recurrences by storing partial results and
reusing them when needed [3]. It is a method for solving a
complex problem by breaking it down into a collection of
simpler sub problems. It demands very elegant formulation of
the approach and simple thinking and the coding part is very
easy. The idea is very simple, If you have solved a problem
with the given input, then save the result for future reference,
so as to avoid solving the same problem again, shortly
'Remember your Past'. If the given problem can be broken up
in to smaller sub-problems and these smaller sub problems are
in turn divided in still-smaller ones, and in this process, if you
observe some over-lapping sub problems, then it is a big hint
for DP. Also, the optimal solutions to the sub problems
contribute to the optimal solution of the given problem
(referred to as the Optimal Substructure Property).

There are two ways of doing this.

1. Top-Down: Start solving the given problem by breaking it
down. If you see that the problem has been solved
already, and then just returns the saved answer. If it has
not been solved, solve it and save the answer. This is
usually easy to think of and very intuitive. This is referred
to as Memoization.

2. Bottom-Up: Analyze the problem and see the order, in
which the sub-problems are solved and start solving from
the trivial sub problem, up towards the given problem. In
this process, it is guaranteed that the sub problems are
solved before solving the problem. This is referred to as
Dynamic Programming.

Steps followed while implementing Dynamic Programming:

1. Characterize the recursive structure of an optimal
solution,

2. Define recursively the value of an optimal solution,
3. Compute, bottom up, the cost of a solution,
4. Construct an optimal solution.

This approach is also used to solve travelling salesman
problem but only for limited number of cities.

3. HEURISTIC ALGORITHMS TO SOLVE
TRAVELLING SALESMAN PROBLEM (TSP)

The different optimization algorithms such as genetic
algorithm (GA), particle swarm optimization (PSO) , artificial
bee colony (ABC) algorithm, ant colony optimization (ABC)
used to solve the TSP are described in this section.

3.1 Genetic algorithm (GA)

The process of finding optimal solution using genetic
algorithm consists of representing the cities (individuals) in
the form of chromosomes which is in the form of matrices in
case of TSP [4]. The individual cities with the best genetic

material (minimum time and monetary value) are found out
using the operators: crossover and mutation. The crossover
operator helps to increase the average quality of the population
and mutation operator helps in avoiding local optima and
producing new paths. A fitness function is used to evaluate the
quality or probability of the individual path in the population.
The problem with the GA is that the representation of the path
is not unique. Sometimes, the crossover operator also does not
produce valid tour paths. Algorithm steps are as follows:

1. Initialize the population of chromosomes which are
suitable solutions for the problem.

2. Evaluate the fitness of the defined objective function of
each chromosome in the population.

3. A new population is generated by using the following
operators.
a) Selection: Select two parent chromosomes from a
population according to their fitness evaluated in Step 2.
The probability of selection of a parent chromosome is
higher with the better fitness value.
b) Crossover: The new offspring are generated using the
crossover operator. The crossover probability controls the
number of chromosomes undergoing crossover to produce
new offspring.
c) Mutation: The population is allowed to mutate with a
low mutation probability. The mutation probability
controls the probability with which new genes are
introduced into the population for trial.
d) Replace this mutated population in place of the initial
generated populated in Step 1.

4. Use new generated population for a further run of the
algorithm.

5. Stop if the end condition is satisfied and return the best
solution in current population else repeat step 2.

3.2 Particle swarm optimization (PSO)

The particle swarm optimization is based on social behavior of
flock of birds or school of fish. It is also a population based
nature inspired algorithm [5]. The system is initialized firstly
in a set of randomly generated potential solutions, and then is
performed to search for the optimum one iteratively. It finds
the optimum solution by swarms following the best particle.
PSO includes elements of exploration and exploitation which
helps to avoid the trapping in local optimum position. Some of
the key advantages are that this method does not need the
calculation of derivatives that the knowledge of good solutions
is retained by all particles and those particles in the swarm
share information between them. PSO is less sensitive to the
nature of the objective function, can be used for stochastic
objective functions and is less likely to get stuck in local
minima.

Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 2, Number 18; July-September, 2015

Avani Sharma and Kamlesh Dutta

1614

Algorithm steps are as follows:

1. Initialize a population of particles, initial searching points
and velocities randomly within the allowable range. The
current searching point is set to pbest for each agent. The
pbest with best evaluated value is set to gbest and the
agent number with the best value is stored.

2. Evaluate the objective function value for each agent. If
the fitness value is better than current pbest of the agent,
the pbest value is replaced by the current value. If the best
value of pbest is better than the current gbest, gbest is
replaced by the best value and the agent number with the
best value is stored.

3. The current searching point is changed according to
following equations:

1
1 1 2 2

max min
max

max
1 1

() ()k k k k
i i i i i

k k k
i i i

v wv c rand pbest s c rand gbest s
w w

w w iter
iter

s s v

+

+ +

= + × − + × −

−
= − ×

= +

where k
iv is velocity of agent I at iteration k, w is the

weighting function, cj is weighting coefficients, rand is
random number, k

is is current position of agent i at iteration k,
pbesti is pbest of agent i, gbest is gbest of the group, wmax is
initial weight, wmin is final weight, itermax is maximum
iteration number and iter is current iteration number.

4. Stop if the exit condition is met else proceeds to step 2.

3.3 Artificial bee colony (ABC) algorithm

The artificial bee colony (ABC) algorithm is based on the
foraging behavior of bees [6]. The minimal model of forage
selection that leads to the emergence of collective intelligence
of honey bee swarms consists of three essential components:
food sources, employed foragers and unemployed foragers,
and the model defines two leading modes of the behavior: the
recruitment to a rich nectar source and the abandonment of a
poor source.

The value of a food source depends on many factors such as
its proximity to the nest, its richness or concentration of its
energy, and the ease of extracting this energy. The employed
foragers are associated with a particular food source which
they are currently exploiting or are “employed” at. They carry
with them information about this particular source to the hive
and the information can be the distance and direction from the
nest, the profitability of the source and share this information
with a certain probability. The unemployed foragers are
continually at look out for a food source to exploit. There are
two types of unemployed foragers: scouts, searching the
environment surrounding the nest for new food sources and

onlookers waiting in the nest and establishing a food source
through the information shared by employed foragers.

3.4 Ant colony optimization (ACO) algorithm

In ACO, an artificial ant is an agent which moves from city to
city on a TSP graph. It chooses the city to move to using a
probabilistic function both of trail accumulated on edges and
of a heuristic value, which was chosen here to be a function of
the edges length [7, 8]. Artificial ants probabilistically prefer
cities that are connected by edges with a lot of pheromone trail
and which are close-by. Initially, m artificial ants are placed
on randomly selected cities. At each time step they move to
new cities and modify the pheromone trail on the edges used,
this is termed local trail updating. When all the ants have
completed a tour the ant that made the shortest tour modifies
the edges belonging to its tour termed global trail updating by
adding an amount of pheromone trail that is inversely
proportional to the tour length. Algorithm steps are as follows:

1. Generate randomly a set (C) of possible solutions, set (L)
of possible connections among the elements of C. A graph
is constructed which is completely connected and
weighted where vertices are the components C, set L fully
connects the components C, and T is a vector whose
components representing the pheromone trail strength.

2. Initialize the pheromone trail strength for all the edges.
3. Set the number of ants in a colony as m, and put each ant

on a randomly chosen vertex of the graph.
4. All the ants construct their feasible paths by moving to the

next vertex based on a probabilistic decision according to
state transition rule.

,

1

[(,)] [(,)] ,
(,) [(,)] [(,)]

0

k it
k

i j i j j u N
p i j i u i u

otherwise

α β

α β

τ η
τ η

 ⋅
∈

= ⋅



∑

where (,)i jτ represents the pheromone trail associated with
li,j, which is connected between vertices I and j, (,)i jη is
desirability of adding connection li,j to the solution under
construction

5. The solution construction phase is repeated until all ants
have completed their feasible paths.

6. The global updating rule is applied which enforce two
things: pheromone evaporation (stops pheromone from
unlimited accumulation) and pheromone reinforcement
(more pheromone on favorable edges).

1
(,) (1) (,) (,)m

kk
i j i j i jτ α τ τ

=
← − ⋅ + ∆∑

where α is a pheromone decay parameter lying between 0
and 1.

7. Check the termination criterion else return to step 4.

Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 2, Number 18; July-September, 2015

Review of Algorithms to Solve Travelling Salesman Problem 1615

3.5 Honey Bees Mating Optimization (HBMO) algorithm

Recently, honey bees are among the social insects that are the
most studied. Honey bees mating optimization (HBMO), one
of the search algorithms inspired by the real courtship process
of honey bees, is a new swarm intelligence optimization
method that is used for simulating social systems [9]. It is a
meta-heuristic method inspired by the social phylogenetic of
honey bees, be used to solve integrated optimization problems
of probability and applied this method to a number of
suggestive satisfaction problems. Social insects demonstrate
several interesting behaviors: division of labor, individual and
group communication and association. These behaviors are
due to a combination of the honey bees’ genes, nest conditions
and ecological environment. Studies on honey bees have
revealed much information on molecular genetic problems and
the complicated area of socio-genetics. The male haploid
structure enables a unique genetic analysis based on the
presence of haploid/diploid individuals. New swarm
intelligence algorithms based on the haploid and diploid
genetic developing operations known as BMO in honey bees
have been created and improved for combinatorial
optimization problem solutions.

In the honey bees mating optimization algorithm, the
procedure of mating of the queen with the drones is described.
First, the queen is flying randomly in the air and, based on her
speed and her energy, if she meets a drone then there is a
possibility to mate with him. Even if the queen mates with the
drone, she does not create directly a brood but stores the
genotype of the drone in her spermatheca and the brood is
created only when the mating flight has been completed. With
the term genotype we mean some of the basic characteristics
of the drones, i.e. part of the solution. A crossover operator is
used in order to create the broods. In a hive, the role of the
workers is simply the brood care (i.e. to feed them with the
‘‘royal jelly”) and, thus, they are only a local search phase in
the Honey Bees Mating Optimization algorithm. Thus, this
algorithm combines both the mating process of the queen and
one part of the foraging behavior of the honey bees inside the
hive. If a brood is better (fittest) than the queen, then this
brood replaces the queen.

3.6 Hybridized Honey Bees Mating Optimization
(HHBMO) algorithm

The hybrid HBMO algorithm inherits the basic characteristics
of the HBMO and incorporates the special features of various
algorithms to increase the efficiency of the hybridized
algorithm. More specifically, the proposed algorithm uses:

1. The Multiple Phase Neighborhood Search-Greedy
Randomized Adaptive Search Procedure (MPNS-
GRASP) for the calculation of the initial population of
bees and of the initial queen. This procedure is used in
order to have a more competitive queen [10].

2. The Expanding Neighborhood Search (ENS) as a local
search strategy in order to have more effective and

different workers. By using ENS, each brood has the
possibility to select randomly the number of workers
(local search phases) that will be used for the
improvement of its solution.

3. A new crossover operator based on an Adaptive Memory
Procedure and on a uniform crossover operator in order to
have fittest broods. This crossover operator combines the
genotype of the queen and of more than one drones to
produce a brood. The reason why such a crossover
operator is used is because in real life the queen stores in
her spermatheca after the mating the genotype of all
drones and after returning to the hive she produces the
broods. The adaptive memory procedure is used in order
to give the possibility to the queen to store from previous
selected good drones (in previous mating flights) part of
their solutions, for been able to use them in a new mating
flight and for producing fittest broods.

The process of the hybridized HBMO algorithm is briefly
given as:

1. Initialize the population of bees using MPNS-GRASP
algorithm.

2. Select the best bee among the initial population as the
queen. Also, define the maximum number of queen’s
mating in a single mating flight.

3. Initialize the speed and energy of the queen’s mating
which are selected at random.

4. The probability of mating of drone with the queen is
given as:

()
()()
f

speed tprob D e
 −∆
 
 =

5. After each transition in space, the queen’s speed and
energy decay according to the following equations:

(1) ()
(1) ()

speed t speed t
energy t energy t

α
α

+ = ×
+ = ×

6. A brood is generated using the new crossover operator
which includes the exploration feature in the algorithm.

4. CONCLUSIONS

The travelling salesman problem is one of the important
combinatorial optimization problems in graph theory. The
different algorithms used by the researchers to find the optimal
path have been reviewed and presented in this article. It is
found that the hybrid HBMO algorithm includes the best
features of other algorithms which make the algorithm faster
and suitable for large-sized optimization problems.

REFERENCES

[1] Gutin, G., Punnen, A., The Traveling Salesman Problem and its
Variations. Kluwer Academic Publishers, Dordrecht, 2002.

[2] Rastogi, A., Shrivastava, A.K., Payal, N. and Singh, R., “A
Proposed Solution to Travelling Salesman Problem using
Branch and Bound”, International Journal of Computer
Applications, 65, 2013, pp. 0975-8887.

Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 2, Number 18; July-September, 2015

Avani Sharma and Kamlesh Dutta

1616

[3] Boddy, M., “Anytime Problem solving using Dynamic
Programming”, AAAI-91 Proceedings, 1991, pp. 738-743.

[4] Baralia, R., Hildago, J.I., Perego, R., “A hybrid heuristic for the
traveling salesman problem”, IEEE Transactions on
Evolutionary Computation, 5, 2001, pp. 1–41.

[5] Goldbarg, E.F.G., Souza, G.R., Goldbarg, M.C., “Particle swarm
optimization for the traveling salesman problem”, in: EVOCOP
2006, LNCS, 2006, pp. 99–110.

[6] Baykasoglu, A., Ozbakor, L., Tapkan, P., “Artificial bee colony
algorithm and its application to generalized assignment
problem”, in: F.T.S. Chan, M.K. Tiwari (Eds.), Swarm
Intelligence, Focus on Ant and Particle Swarm Optimization, I-
Tech Education and Publishing, 2007, pp. 113–144.

[7] Dorigo, M., Gambardella, L.M., “Ant colonies for the traveling
salesman problem”, Biosystems, 43, 1997, pp. 73–81.

[8] Chu, S.C., Roddick, J.F., Pan, J.S., “Ant colony system with
communication strategies”, Information Sciences, 167(1–4),
2004, pp. 63–76.

[9] Fathian, M., Amiri, B., Maroosi, A., “Application of honey bee
mating optimization algorithm on clustering” Applied
Mathematics and Computation, 190, 2007, pp. 1502–1513.

[10] Marinakis, Y., Marinaki, M., Dounias, G., “Honey bees mating
optimization algorithm for the Euclidean traveling salesman
problem”, Information Sciences, 181(20), 2011, pp. 4684-4698.

Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 2, Number 18; July-September, 2015

	1. Introduction
	2. Classical Algorithms to Solve Travelling Salesman Problem (TSP)
	3. Heuristic Algorithms to Solve Travelling Salesman Problem (TSP)
	4. Conclusions
	References

